
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6169 351

Implementation of Hybrid Cryptosystem using

AES-256 and SHA-2 256 by LabVIEW

Israa H. Latif
1
, Ergun Erçelebi

2

Electrical and Electronics Dept., College of Engineering, Gaziantep University, Gaziantep, Turkey
 1, 2

Abstract: In This paper, the software implementation of the hybrid cryptosystem which consists of the Symmetric-key

algorithm AES-256 and the secure hash algorithm SHA-2 256 is presented using the VI LabVIEW environment toolkit.

The idea of the proposed Hybrid Cryptosystem is to use the SHA-256 bit as a key generation for AES-256 in order to

improve the data security to a greater extent because it provides higher security in terms of complexity. The proposed

hybrid cryptosystem is implemented using LabVIEW 2013, and from the simulation results obtained, we see the

simplicity in modeling AES-256,SHA-256 and the complete hybrid cryptosystem, the results show two cases, the first

case is how we can use the same input messages(plain text of AES-256 is the same as the input message to SHA-256),

and the second case with different input messages (plain text of AES-256 is not the same as the input message to SHA-

256). And from these results we see that the output results will be the same for the compelete hybrid cryptosystem in

the two cases.

Keywords: Advanced Encryption Standard (AES-256), Cryptography, Hash function (SHA-2 256), key Generation,

LabVIEW.

I. INTRODUCTION

Crypto-system is the dealing method with the security-

related problems by encrypting the sending data and

decrypting the receiving data. So, we can store sensitive

and important information or transmit them across

insecure networks in a safe way to be protected from

unauthorized persons. Cryptography involves three

distinct mechanisms: Asymmetric-key encipher

mechanism (public key method), Symmetric-key encipher

mechanism (secret key method), and Hashing Algorithms

[1].

For asymmetric key cryptographic algorithms, there are

two kinds of keys: a private key and a public key. The

private key is kept secret while the public key is known to

everyone. The public key is for encryption, and the private

key is used to decrypt the encrypted message which can be

only used by the corresponding private key. Examples on

the asymmetric crypto system are the Rivest-Shmir–

Adleman (RSA) and Elliptic curve cryptography (ECC).

For symmetric key cryptographic algorithm, it has a single

key for both encryption and decryption processes. It can

be classified into two groups, namely block and stream

ciphers. The Data Encryption Standard (DES) and

Advanced Encryption Standard (AES) are two examples

of the symmetric block crypto system [2].

The Advanced Encryption Standard (AES) is a symmetric-

key block cipher which is published by the National

Institute of Standards and Technology (NIST) in

December 2001.NIST announced that a draft of the

Federal Information Processing Standard (FIPS) was

available for public review and common in February 2001.

Finally, in December 2001, AES was published as FIPS

197 in the Federal Register[2].

For Cryptographic hash functions, they are the

mathematical operations that run on the digital data. A

user can determine the integrity of any data by making a

comparison between the computed “hash” to an expected

hash value. The Security Hash Algorithm SHA-256 is a

kind of cryptographic hash function that is designed by the

NSA (U.S. National Security Agency)[8].

The most widely used hash functions are:

 MD2, MD4 and MD5 (Message Digest).

– produce 128-bit digests.

– final searches announced some weaknesses with these

types.

 SHA-1 (Security Hash Algorithm1).

– produce 160-bit digests.

 SHA-2 family (Security Hash Algorithm2).

– Many Types: SHA-224, SHA-256, SHA-384 and SHA-

512.

– These produce digests of sizes 224, 256, 384 and 512

bits respectively.

 SHA-3 (Security Hash Algorithm 3).

– it is very different and more secure than SHA-1 and

SHA-2[3].

Finally, For LabVIEW (Laboratory Virtual Instrument

Engineering Workbench) is an integrated development

environment designed specifically for engineers and

scientists. The LabVIEW is a graphical programming

language (G) that uses a dataflow model, which make it

different from other programming languages use

sequential lines of textcodes that empower the user to

write functional code using a visual layout that resembles

your thought process. The VI (virtual instrument) is the

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6169 352

basic LabVIEW element. A VI has three main parts as

shown in figure (1)

A. Front Panel: Interacts with the user.

B. Block Diagram: Contains the code.

C. Connector Pane: Method of connecting to other VI‟s

[4].

Figure (1): Main parts of LabVIEW

II. ADVANCED ENCRYPTION STANDARD (AES-

256)

The AES algorithm is a block cipher algorithm, has s a

fixed block size length of 128 bitswith three different

keylengths of 128, 192, and 256 bits to encrypt and

decrypt data in blocks of bits. The 128 bits means that the

block that the AES operates on is a 4x4 square of bytes

[5].

The AES parameters depend on the key length as shown in

Table (1) below.

Table(1): The AES Parameters

Key size

Nk (bits)

Plaintext

block size

(bits)

Number

of rounds

Nr (bits)

Round

key size

(bits)

Expanded

key size

(bits)

128 128 10 128 176

192 128 12 128 208

256 128 14 128 240

In this paper description, the key length of 256-bit is

assumed, which is mainly used in top secret military

applications to ensure the maximum level of security, but

it costs many resourcesbecause it requires higher area

implementations and longer processing time, while key

sizes of 128-bit is sufficient for most of the commercial

applications and 192-bit is also used in top secret military

applications but it lower costs than 256-bit [5, 6].

The AES Encryption algorithm uses a round function that

is composed of four different byte-oriented

transformations: Byte substitution, Shifting rows, Mixing

Column and Adding a Round Key [5].

And for The AES decryption algorithm uses a round

function that is composed of four different byte-oriented

transformations: Inverse Byte substitution, Inverse

Shifting rows, Inverse Mixing Column and Adding a

Round Key[5].As shown in figure (2).

Figure (2): The Encryption and Decryption Rounds for

AES-256

A. The Byte substitution and Inverse Byte substitution.

In Encryption process, the SubBytes step, each byte in the

state matrix is replaced with a SubByte using an 8-bit data

from the Rijndael S-Box. And for Decryption Process, in

the Inverse SubBytes step, every byte in the cipher array is

replaced with corresponding Inverse SubByte value.The

SubByte operation will provide the non-linearity in the

cipher. The S- Box used is derived from the multiplicative

inverse over Galois Field (2^8),And for Decryption

Process, the Inverse SubBytes arethe same routine as

SubBytes, but uses the inverse S-Box[15].

B.The Shifting Rows and Inverse Shifting Rows.

In the encryption, the transformation ofShift Rows is a

simple shifting transformation.The transformationis as

following:

– 1
st
 row is unchanged.

– 2
nd

 row is shifted by one byte to the left.

– 3
rd

 row is shifted by two bytes to the left.

– 4
th

 row is shifted by three bytes to the left.

And for Decryption Process, the Inverse ShiftRows

transformation is as following:

– 1
st
 row is unchanged.

– 2
nd

 row is shifted by one byte to the right.

– 3
rd

 row is shifted by two bytes to the right.

– 4
th

 row is shifted by three bytes to the right[5, 6].

C. The Mixing Column and Inverse Mixing Column.

In Encryption process, The MixColumns transformation

operates on the State column-by-column, treating each

column as a four-term polynomial. Each column is

processed separately and each byte of a column is replaced

by a value dependent on all 4 bytes in that column.

Effectively a matrix multiplication in GF(2
8
) will use the

prime poly m(x) =x
8
+x

4
+x

3
+x+1

And in Decryption Process, The inverse MixColumn is

performed in the same way of MixColumn but with

different values in the array.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6169 353

(Hint: In the last round of AES algorithm encryption and

decryption there is no MixColomn transformation [2, 5].

D. Adding a Round Key.

In Encryption process, the bitwise exclusive-or (XOR)

operation is performed between outputs from Mix Column

and Round Key. The output of this round will be sent to

the next round. Each round key consists of Nb words that

are generated from the KeyExpansion routine. By

inverting the encryption structure one can easily derive the

decryption structure. However, the sequence of the

transformations will be different from that in encryption

[2, 6].

• W0 , W1 , W2 and W3 are Cipher Key

• W(i) = W(i-4) XOR g(W(i-3))

• W(i+1) = W(i-3) XOR W(i)

• W(i+2) = W(i-2) XOR W(i+1)

• W(i+3) = W(i-1) XOR W(i+2)

• Note: i should be a multiple of 4.

• W(i), W(i+1), W(i+2) and W(i+3) are collated together

to generate the key for the next round. The function g()

is clearly used only for generating W(i).

And for In the Decryption Process, There is no need of

Inverse AddRoundKey in the decryption since XOR

operation is inverse of itself[5, 6].Figure (3) shows the

details of an AES round.

Figure (3): Details of an AES round.

III. THE SECURE HASH ALGORITHM SHA-2 256

SHA-256 can accept messages with arbitrary lengths up to

2^64-bit. The Hash computation produces a final digest

message of 256- bits that depended on the input message,

composed by multiple blocks of 512-bit each. Then this

input block will be expanded and fedto the 64 cycles of the

SHA-256 function in 32-bit words.

The SHA-256 algorithm basically consists of three stages:

Message Padding and parsing, Message Expansion and

Message Compression [9], SHA-256 works as follows:

 At start the message is converted to its equivalent binary

form, then it is padded with a one binary „1‟ and then

padded with binary „0‟s until the block length ≡ 448 mod

512. Then the original message length (as a 64-bit binary

number) will be added to the end of the padded message

[16].

After that, the registers a, b, c, d, e, f, g and h are set to

eight intermediate hash values (32-bit constants H0to H7)

for the first message block, and to the intermediate hash

value for the following blocks. Then, the 64 iterations of

the compression function are completed, given by:

T
1
= h + Σ

1
(e) + Ch(e,f,g) + K

t
+ W

t
;

T
2
= Σ

0
(a) + Maj(a,b,c) ;

h = g; g = f; f = e;

e = d + T
1;

d = c; c = b; b = a;

a = T
1
+ T

2;

Where:

Ch, Maj, Σ
0
, and Σ

1
functions are independent of the round

number, The Ch, Maj, Σ0, and Σ1 functions operate on 32-

bit input words, and produce the 32-bit words given by

Ch(X, Y, Z) = (X ∧ Y) ⊕ (¬X ∧ Z);

Maj(X,Y,Z) = (X ∧ Y) ⊕ (X ∧ Z) ⊕ (Y ∧ Z);

Σ0(X)= ROTR2(X) ⊕ROTR13(X) ⊕ROTR22(X);

Σ1(X)= ROTR6(X) ⊕ROTR11(X) ⊕ROTR25(X);

Where K
t

and W
t

are a constant and the message word

which value depends upon the round number (t) [16].

Finally, the output of the registers is added to the previous

intermediate hash value to give the new one. As shown in

Figure (4-b) for an output of one round of the compression

function.

The process of „message scheduling‟ will take the original

512-bit message block as input and expands these 16 32-

bit words into 64 words, one for every round of the

compression function. This is done according to the

following recurrence formula:

W
t
= σ

1
(W

t-2
) + W

t-7
+ σ

0
(W

t-15
) + W

t-16
;

As shown in figure (4-a),where the σ0 and σ1 functions

operate on 32-bit input words, and produce the 32-bit

words given by:

σ0 (X)= ROTR7(X) ⊕ROTR18(X) ⊕SHR3(X)

σ1 (X)= ROTR17(X) ⊕ROTR19(X) ⊕SHR10(X)

After all consecutive 512-bit message blocks have been

hashed, the last intermediate hash value is the final overall

hash value [16].

Figure (4-a): (Wt) message scheduled recurrence

Figure (4-b): Hash computation, state register update

function

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6169 354

IV. PROPOSED IMPLEMENTATION

The SHA-256 and AES-256 are implemented by using

LabVIEW 2013, first the original message is processed via

SHA-256 algorithm, then the code generated by SHA-256

is processed via AES-256 algorithm to give a very secure

code (as a key for AES) that cannot be breakable easily.

A. The SHA-256 with LabVIEW2013.

For the secure hash algorithm SHA-256 stepsin

LabVIEW2013;we will show the data flows from left to

right. We take the string input from the Message textbox,

convert it into a byte array, apply the SHA-256 hash to it

and then output it into the Hash control. As shown in

figure (5-a).

Figure (5-a): Block diagram of SHA-256

The red box "SHA 256 U8 []” contains the hash code,it

accepts a byte array and outputs a32-bit array of unsigned

integers.

In figure (5-b) shows the contents of "SHA 256 U8 []"

block, where the prepared message is applied to SHA-256

block to function it.

Figure (5-b): Block diagram of SHA-256

1) Message Preparation

The figure (5-c) shows the source code to the message

preparation block. The first step is to add a single binary

bit„1‟ to the message, by appending a 0x80 byte to the

message array. Next step is to pad „0‟s to the message with

0x00 bytes until the message block length= 448 mod 512.

The working is continuous with bytes, so we will take the

message length modulo 64 and then add enough padding

bytes in order to make the message length =56 modulo 64.

Finally, the length of the message will be appendedto a 64-

bit unsigned integer andthe byte array is converted to an

unsigned 32-bit integer array.

Figure (5-c): Message Preparation

2) 512-bit Chunk Hashing

In this step,we apply the hash function to the message in

512 bit chunks, which is simple loop works on 512 bit (16

x 32-bit) pieces of the message at a time. All the up and

down arrows on the edge of the loop construct to indicate

that the output of the previous round is used as the input to

the next round. The whole SHA-256 compression function

is done in the "SHA 256 BLK.".

As shown in figure (5-d)

Figure (5-d): SHA-256 Hash Function and block contents

3) Block Hashing

Each round of the loop will execute the following SHA-

256 hash block function with the output of one round used

as the input to the next. This is the most complicated part

of SHA-256.

At first, an array of 64 32-bit unsigned integers is

declared, where the message block will be expanded in

this working register with a variety of XOR functions,

right shift and right rotate operations. The result of this

will be the 512-bit block expanded into a 2048 bit space.

As shown in figure (5-e).

Figure (5-e): Initialize the SHA-256 Block

4) Round Constants

SHA-256 algorithm uses a group of round constants.

These are numbers chosen to exhibit certain properties to

make it difficult to architect an input to produce a desired

output. An example of an invisible motive would be

selecting constants that open a back door to the designer of

the hashing algorithm. The SHA-256 series of hash

functions that use square and cube roots of different small

prime numbers as round constants.

5) Compression Loop

The next stage of the block hashing algorithm is to loop

through the array that produced in the previous stage and

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6169 355

apply the round constants along with a variety of XOR and

rotate right operations. As shown in figure (5-f).

Figure (5-f): Compression Loop

6) Finalize Hash Values

At the last of SHA-256 operation is adding the results

obtained from the compression loop to the previous round

of hash values. Some implementations use a, b, c, d, e, f, g

and h variables. As shown in figure (5-g).

Figure (5-g): Finalize Hash Values

B. The AES-256 with LabVIEW2013.

The AES-256 steps in LabVIEW2013 are:

1- The start point of the code is the key generation that

occurs on the server. Here we provide a secret key which

then is expanded by using Rijndael‟s key schedule. The

short key is expanded into a larger one. The 256-bit key is

transformed into a 240-byte key. The key schedule will

take a 4-byte subset of the key as a number of 32 bytes

(256-bits) and an iteration count and send this data to the

key schedule core, which returns 32 bytes (256-bits).As

shown in figure(6-a)

Figure (6-a): Key Generation in LabVIEW

(a) The first step for the key schedule core is

performing a byte rotation on the key and splits the 32

bytes (256-bits) into respective bytes to send them later to

have Rijndael S-box applied. This is used to apart the

relationship between the key and thecipher text. As shown

in figure (6-b).

Figure (6-b): Block Implementation

(b) The next step in the core scheduler is the Rcon

step. This takes the first byte of the output word (from the

S-box) and performs an XOR on the byte with the result of

the Rcon step, which is essentially an exponentiation of 2

to the iteration.As shown in figure(6-c).

Figure (6-c): Modulo Operation in S Block

Implementation

1- After the key has been generated, information about the

key, the type of encryption is performed, as well as the

key itself, needs to be transmitting to the scheduler.

The key is transferred into a byte array, and then sent

one byte at a time along with an interrupt to ensure the

scheduler receives all the data in the correct order.

2- Then the server will send basic commands to the

scheduler stepping the data through both the encryption

and decryption processes before returning the data to

the user.

3- The key is stored in a look-up-table (LUT) in order the

server be able to perform the cryptanalysis. The LUT

can be used to store different and many keys, which

provide user adaptability.For this, we use a VI

methodology. In spite that there are multiple

cryptographic algorithms out there.

4- Once the key information has been provided from the

server; the encryption can take place as soon as the

host gives the signal. In the firststep of encryption, a

round key is generated,which is derived from the key

schedule. Then the iterations process will begin to

perform the actual encryption.

5- Inthe first round of the encryption algorithm, each byte

of the state array will be combined with the round key

using a bitwise XOR. The bulk of the rounds will

perform a non-linear substitution which replaces each

byte with another byte according to a predefined LUT.

Then each row of the state will be shifted cyclically.

6- After that a mixing operation will take place on the

columns and combine the four bytes of each column,

and then the round key will be added again. The final

round is similar to the previous „n‟rounds, without the

column mixing operation.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6169 356

7- The key expansion operation is used to produce the

roundkeysfrom the cipherkey. The AES standard

defines the key expansion operations on four byte

words. A subkey is poised of four such words. The key

expansion for AES-256 steps are:

- The first subkey is the cipher key itself.

- The next words are calculated repeatedly from the

initial set of words using a simple XORfunction.

- In the AES standard there are operations are named

RotWord and SubWord. In which a multiple a special

transformation is used on the words. At start, the first

byte ordering is changed by cyclic left shift, and then

the SubBytes function is applied to all four bytes.

V. RESULTS

In the proposed implementation, As shown in figure (7),an

input of arbitrary length is given to the SHA-2 module. A

message digest of fixed length is generated which is 256-

bits. This message digest is used in the encryption and

decryption process as a key. As shown in the figure (7),

after generating the message digest, it is given as a key for

the encryption of the plain text which in turn generates a

cipher text. Later by making use of same key, decryption

is performed to retain back the original plain text. AES-

256 itself is a strong security mechanism. Since SHA-256

is being used here along with the AES-256, this design

ensures higher security since complexity of the design

increases. Here the security is given in terms of

complexity.

Figure (7): The Proposed model of AES-256 and SHA-

256

We made two test cases as shown below:

FIRST CASE: The plaintext to the AES-256 is the

same as the

input message to SHA-256.

Plaintext to AES-256 ="gaziantep city*"

Cipher Text=3EF7 9267 D665 158E E946 1A10 6E98

37D1 A2CE A393 E872 2116 9EF3 E95F 62C2 A419

Decrypt message="gaziantep city*"

SHA-256Input ="gaziantep city*"

SHA-2Hash code=2FED 0DC5 6D5F E48D B23F EA45

77AD

43DF 62F3 D82E C1B3 58D7 31BA 00CC E013 9F23

I/P KEY=HASH CODE=

2FED 0DC5 6D5F E48D B23F EA45 77AD 43DF 62F3

D82E C1B3 58D7 31BA 00CC E013 9F23

As shown in figure (8-a)

Figure (8-a): Test results of the first case.

SECOND CASE: The plaintext to the AES-256 is not

the same as the input message to SHA-256.

Plaintext to AES-256 ="gaziantep city*"

Cipher Text=3649 042F 8078 BA99 49A1 9F13 ED57

7030 DDA7

1BED 8CF2 A0C7 E184 1E59 101C 2458

Decrypt message="gaziantep city*"

SHA-256Input =GOOD MORNING

SHA-2Hash code=E640 7EA3 71FA 0501 8A9B 0F00

60B5 83F1

A953 2873 A109 B1DF B31A C825 F291 8D95

I/P KEY=HASH CODE=

E640 7EA3 71FA 0501 8A9B 0F00 60B5 83F1 A953

2873 A109 B1DF B31A C825 F291 8D95

As shown in figure (8-b)

Figure (8-b): Test results of the second case.

VI. CONCLUSION

1- Regardless of the user‟s programming

experience, LabVIEW makes user development fast and

easy in the scientific community. So, by implementing the

proposed hybrid cryptosystem which consists of AES-256

and SHA-256 algorithms, we notice the high speed of

showing the output results and the flexibility in controlling

the data flow through the cryptosystem.

2- From the test results, we notice that by changing

the input message of SHA-256, the SHA-256 hash code

(the key of AES-256) and the cipher text (the output of

AES-256 encryption algorithm) will be changed,but the

decrypted message (the output of AES-256 decryption

algorithm) will keep the same.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6169 357

3- From the results obtained in the two cases, we

noticed the ability of using uppercase and lowercase letters

for the input messages for SHA-256.

4- By integrating the hashing algorithm SHA-

256and the cryptography algorithm AES-256 in the same

implementing model; we developed a very difficult hybrid

cryptosystem that cannot break and achieved a higher data

security in terms of complexity.

REFERENCES

[1] Jing Wang, Xiaoyang Zeng, Jun Chen, “A VLSI implementation of

ECC combined with AES” 1-4244-0161 5/06/$20.00 ©2006 IEEE.

[2] William Stallings, “Cryptography and Network Security Principles

and Practices, Fifth Edition”, Prentice Hall, 2011.

[3] Dr.Geoff Hamilton, “CA642: CRYPTOGRAPHY AND NUMBER

THEORY” “

[4] Hans-Petter Halvorsen ,” LabVIEW Programming”
[5] FIPS 197, “Advanced Encryption Standard (AES)”, November 26,

2001.

[6] Seagate–Technology Paper, “128 Bit Versus 256 Bit AES
Encryption”, Practical Business Reasons Why 128 bit Solution

Provide Comprehensive Security for Every Need.

[7] M. Juliato,. C. Gebotys and R. Elbaz, "Efficient Fault Tolerant
SHA-2 Hash Functions for Space Applications,"2009.

[8] M. K. R. Danda, DESIGN AND ANALYSIS OF HASH

FUNCTIONS, 2007.
[9] R. P. McEvoy, F. M. Crowe, C. C. Murphy and W. P. Marnane,

"Optimisation of the SHA-2 Family of Hash Functions on FPGAs,"

Emerging VLSI Technologies and Architectures, IEEE Computer
Society Annual Symposium,2006.

[10] Ryan Glabb, Laurent Imbert and Graham Jullien, "Multi-mode

operator for SHA-2 hash functions," Journal of Systems
Architecture ,ELSEVIER, pp. 127-138, 2007.

[11] L. Selvakumar and C. Ganandhas, "The Evaluation Report of SHA-

256 Crypt Analysis Hash Function," International Conference on
Communication Software and Networks, IEEE Computer Society,

pp. 588-592, 2009

[12] H. Mestiri, F. Kahri, B. Bouallegue and M. Machhout, "Efficient
FPGA Hardware Implementation of Secure Hash Function SHA-2,"

I.J. Computer Network and Information Security ,Published Online

in MECS (http://www.mecs-press.org/), pp. 9-15, 2015.
[13] FIPS PUB 180-2, USA: NIST, 2002.

[14] FIPS PUB 202, SHA-3 Standard: Permutation-Based Hash and

Extendable-Output Functions," NIST, Information Technology
Laboratory National Institute of Standards and Technology , 2002.

[15] P.V.S. Shastry, A. Agnihotri, D. Kachhwaha, J. Singh and

M.S.Sutaone, “A Combinational Logic Implementation of S-Box of
AES,” IEEE 54th Int. Midwest Symp on Circuits and Systems

(MWSCAS), Aug. 2011, pp. 1-4.

[16] Dr. Helena Handschuh, Dr. Henri Gilbert, “Security Level of
Cryptography -SHA-256”, Issy-les-Moulineaux 31 January 2002.

